Best Practices Commissioning & Validation

Presented by Gearoid Cronin, Commissioning, Qualification & Field Sales Manager, PM Group Asia
September 2009
Best Practices Commissioning & Validation

Facilitating Quicker Pharmaceutical Project Delivery
Agenda

This presentation will discuss the current trends in Commissioning and Qualification (C&Q), it will cover

- Review of current (FDA and EU) regulatory environment and trends
- Master Planning Commissioning and Qualification
- Best Practice Commissioning and Start-up
- Risk Assessment to Reduce Qualification Load
- Leveraging and Utilising Vendor Testing to maximum impact
- Change control strategy across the project lifecycle
Establishing the Regulatory Basis

Facilitating Quicker Pharmaceutical Project Delivery
Regulatory Drivers

- 21st Century cGMP Initiative
- PIC/S Guidance
- EU Volume 4
Other Drivers

- ISPE Product Quality Lifecycle Implementation (PQLI) Initiative
 - Practical Implementation of ICH Guidance and Quality by Design
- GAMP 5 Guidance
- ISPE GEP best practice guide
- FDA draft PV guidance 2008
- ISPE Baseline Guide 12 Draft Verification guide
- EU Annex 20, Quality Risk Management – March 2008
- ICH Q8 Pharmaceutical Development - Nov 2005
- ICH Q10 – Quality Systems – June 2008
Beginning with the End in Mind

Traditional ‘V’ Model or Risk Based Verification

- User Requirements Specification
- Functional Specification
- Design Specification
- Installation Qualification
- System Build
- Performance Qualification
- Operational Qualification

GOOD ENGINEERING PRACTICE

- Requirements
- Specification & Design
- Verification
- Acceptance & Release
- Operation & Continuous Improvement

RISK MANAGEMENT

DESIGN REVIEW

CHANGE MANAGEMENT
Back to the Basics - Why Qualify?
FDA regulatory perspective

- Process validation is required in both general and specific terms, by the Current Good Manufacturing Practice Regulation for Finished Pharmaceuticals, 21 CFR Parts 210 and 211.

- § 211.210 Sampling and testing of in-process materials and drug products.

 (a) To assure batch uniformity and integrity of drug products, written procedures shall be established and followed that describe the in-process controls, and tests, or examinations to be conducted on appropriate samples of in-process materials of each batch.

 Such control procedures shall be established to monitor the output and to validate the performance of those manufacturing processes that may be responsible for causing variability in the characteristics of in-process material and the drug product.
Qualification - The “old way”

“Process validation is establishing documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its pre-determined specifications and quality attributes”.

Back to the Basics - Why Qualify?
EU Regulatory Perspective

“It is a requirement of GMP that manufacturers identify what validation work is needed to prove control of critical aspects of their particular operations. Significant changes to facilities, the equipment and the processes, which may affect the quality of the product, should be validated. A risk assessment approach should be used to determine scope and extent of validation.”

Activities are designated as:
- DQ (“First element …could be DQ”)
- IQ
- OQ
- PQ
The overarching philosophy articulated in both the CGMP regulations and in robust modern quality systems is:

- Quality should be built into the product, and testing alone cannot be relied on to ensure product quality
What Next C&Q -------- Verification?

Facilitating Quicker Pharmaceutical Project Delivery
Qualification Results

- The old way:
 - Documentation focused
 - Poor Scope Definition
 - Late Involvement of QA
 - Poor Commissioning Programmes
 - Commissioning running on into Qualification effort

Efficiency:
The New Way

The old way:

- Regulatory environment and industry is ready for change
- Verification focus based on science and risk through Process User Requirements
 - CQA, CPP’s
- Risk Assessment confirms appropriate risk mitigation measures identified, used through the lifecycle
- Project is RFT and C&Q is streamlined under the ASTM guidance
Old Vs New

Current C&Q Guidance

New risk-based approach
How?

- Use of the 8 ASTM principles coupled with:
 - Integrated Lifecycle
 - Integrated Team
 - Integrated Design
 - Integrated Procurement
 - Integrated Scheduling
 - Integrated Construction/Fabrication
 - Integrated Field Engineering
 - Integrated Change Management
 - Integrated Handover
Good Engineering Practice

Requirements → Specification and Design → Verification → Acceptance and Release → Operation & Continuous Improvement

Risk Management

Design Review

Change Management

Figure 1 – The Specification, Design, and Verification Process
4 x 4 Step Process

1. Requirements Definition
2. Specification and Design
3. Verification
4. Acceptance and Release

1. Good Engineering Practice
2. Risk Management
3. Design Reviews
4. Change Management

applied throughout the process.
Verification Process Flow Chart

R&D

interdiscipl. expert team

Process Knowledge

Risk Assessm.

approved list of Critical Aspects (CPP, CQA)

approp. tool

Subject Matter Expert (SME)

Verification Plan

Verification (Design to Operation) to confirm Critical Aspects meet Acceptance Criteria

Completion of verification activities is documented in a Summary

GEP, Project Quality Plan

List approved by Quality Unit

appr. by Q Unit

Review by second, independent SME

Summary approved by Quality Unit

CPP: critical process parameter
CQA: critical quality attribute
What has to Change?

- Adoption of the ASTM E2500-07 Standard Approved in July 2007
- Implement ICH Q8, Q9, Q10
- GEP best practise guide to be implemented
- In the meantime, we outline the applications of guidance and practices *currently* in use in an effort to demonstrate the most effective and successful implementation models
- Approval of the draft PV guide
Where to Next....ASTM?
Steps to a successful Commissioning and Qualification Phase

1. Master Planning Commissioning and Qualification
2. Best Practice Commissioning and Start-up
3. Risk Assessment to Reduce Qualification Load.
4. Leveraging and Utilising Vendor Testing to maximum impact.
5. Change control strategy across the project lifecycle.
1. Master Planning Commissioning and Qualification

- Should be done regardless of the model (New/ Old)
- Define:
 - What testing is being performed in each PHASE
 - What testing is being done by each GROUP
- Tools:
 - Overall C&Q logic chart
 - Test Matrix
 - Integrated Project Schedule
 - Roles and Responsibility Matrix
1. **Master Planning Commissioning and Qualification**

- Have an Integrated Approach

![Diagram](image-url)
1. Master Planning Commissioning and Qualification Planning Step 1: Start-Up Master Plan

ELECTRICAL SUPPLY / AUTOMATED SYSTEMS

- GAS
- BRINE
- POTABLE WATER
- COOLING WATER
- PRE TREATMENT
- PW GENERATORS
- WFI STILL/CLEAN STEAM GENERATION
- WFI DISTRIBUTION
- CLEAN STEAM DISTRIBUTION
- AIR COMPRESSED
- COMPRRESSED AIR
- DRAINS / CIVIL WORKS
1. Master Planning Commissioning and Qualification Planning Step 2: C&Q logic

Current Industry Trends - High Leveraged C&Q Model

- IFC Design
- Instruments Installed
- Controls Energised
- Mechanical completion
- TCCC to Operations

Construction
- Construction & Engineering TOPs Verified as Complete & Submitted as Approvable
- Hydro, Leak, Flushing & Cleaning
- Degreasing & Passivation
- If necessary, Final R&D Walkdown
- Software Development Test (DT) Hard & Software FAT
- FAT
- URS
- URS/CLA
- Execute DQ
- Execute GMP Review

Commissioning & Qualification
- Design docs and scripts updated
- QA CC started
- Cycle Development Pre PQ
- Execute PQ
- Cycle Development Pre PQ
- Execute CTP
- Update design Doc/CTP
- CTP Dry run
- Static System Leak test
- Calibration
- Full Loop Check
- Closeout Remaining Punchlist Items
- Closeout Punchlist Items Required to meet MCC
- Closeout Punchlist Items
- SAT
- Final R&D Walkdown
- Pre-commissioning Start up, Calibrations, SAT, Dry Run

Mandatory PMD Walkdown

CTP = Functional/Operational Testing
- Dry run
 - Full CTP dry run
 - Installation
 - Functional
 - Operational
 - Output is redlined design document and script
 - "This is the commissioning run"

Commissioning Cycle Development
- Hydraulics balancing
- Recipe development

PM Group
Master Planning, Commissioning and Qualification
Planning Step 3: Test Master Plan

<table>
<thead>
<tr>
<th>Test</th>
<th>FAT</th>
<th>Mechanical Completion</th>
<th>Commissioning / SAT</th>
<th>IQ</th>
<th>OQ</th>
<th>CQ/PQ/PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component Checks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation Checks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Rotation Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handwired Interlock Checks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service / Leak Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flushing and Blowdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passivation / Cleaning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop Checks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back-Up and Restore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trending</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security and Access Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Testing Utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Testing Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Testing Packaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An interactive planning session identify which test is done where and by whom.

Also could add Receipt Verification etc
1. Master Planning Commissioning and Qualification

- Planning Step 4: Fully Integrated schedule
 - Start with a level 1 schedule from Design to regulatory approval
 - Construction Dates as Input date
 - Handover as Output date
 - Integrated Planning session essential
 - Feedback

- Planning Step 5: Roles and Responsibilities Matrix
 - For example LACTI Matrix
 - L = Leads
 - A = Approves
 - T = Tasked
 - C = Consults
 - I = Informed
1. Master Planning Commissioning and Qualification

- During project execution:
 - Monitor Schedule Progress
 - Carefully manage Commissioning and Qualification:
 - Track Progress
 - Upstream systems
 - Test Documents
 - Construction dates
 - Completion dates
 - Handover meetings to ensure smooth Handover:
 - From Construction
 - To User
 - Daily/Weekly Toolbox talks
 - Have a clear reporting tool
Black Utilities Pre-execution Documents Progress Graph

1. Master Planning Commissioning and Qualification
2. Best Practice Commissioning and Start-Up

The key to effective Commissioning and start-up is GEP

- Definition of GEP:
 - “Established engineering methods and standards that are applied throughout the project lifecycle to deliver appropriate cost-effective solutions.”
 - ISPE Baseline Guide, Volume 5

- The application of well understood, easy to use GEP’s enables the delivery of effective integrated C&Q projects.

- New Good Practice Guide from ISPE is approved on GEP outlining core concepts and core practices- available from www.ispe.org
2. Best Practice Commissioning and Start-Up

Good Practice Guide - GEP, 2008 Key Concepts
2. Best Practice Commissioning and Start-Up - Ongoing Focus on GEP’s

“The concept of a focused qualification effort is based on the assumption that these good engineering practices, and in particular a robust commissioning process, have been used to ensure the equipment, systems and associated automation and controls are acceptable from an engineering perspective and are fit for the purpose of meeting user requirements.”
3. Risk Assessment to Focus Qualification on CPP’s and QCA’s
ICH Q9 Risk Assessment Mode

- Initiate Process
- Risk Assessment
 - Risk Identification
 - Risk Analysis
 - Risk Evaluation
- Risk Control
 - Risk Reduction
 - Risk Acceptance
- Output / Results
- Risk Review
 - Review Events

RISK COMMUNICATION
3. Risk Assessment to Reduce Qualification Load
Reducing the Load – All design criteria

All Elements → GEP

Science and Risk-Based Approach

Process Critical Elements → Qualification/Validation
3. Risk Assessment to Reduce Qualification Load

Some Tools Relevant to C&Q

<table>
<thead>
<tr>
<th>Item</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>System and Component Assessment</td>
<td>Identify and qualify direct impact systems.</td>
</tr>
<tr>
<td></td>
<td>Identify critical components to reduce qualification requirements.</td>
</tr>
<tr>
<td>Family Approach/ Equivalence</td>
<td>Group identical vessels to reduce OQ and PQ testing.</td>
</tr>
<tr>
<td>Functional Risk Assessments</td>
<td>Identify Critical Functions</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Modes and Effects Analysis</td>
</tr>
<tr>
<td>Process Risk Assessments</td>
<td>Identifying Process Risks</td>
</tr>
<tr>
<td>Functional Component Criticality Assessments</td>
<td>Identify Critical Functions</td>
</tr>
<tr>
<td>Quality Risk Assessments (QRA’s)</td>
<td>Based on the outcomes of the risk assessments the critical aspects for each direct impact system shall be identified.</td>
</tr>
</tbody>
</table>

Many more tools available, but should always be based on **science and knowledge**, and performed by a subject matter expert with support from the complete multidiscipline team.
4. Leveraging and Utilising Vendor Testing to Maximum Impact

Leveraging

– Leveraging can be defined as the process by which testing or verification from one phase of the project is used to substitute or enhance testing or verification of another phase of the project. (Either Vendor Dossier/Construction to Commissioning or Commissioning to Qualification).
– Should be identified up front in the testing matrix
– For Information or tests to be leveraged:
 • The test must have been successfully completed, and pass its acceptance criteria,
 • Reviewed by a competent project team member,
 • Good Documentation Practice (GDP) must be adhered to,
 • Change control must be in effect.
4. Leveraging and Utilising Vendor Testing to Maximum Impact

- **Vendor Testing**
 - Can be a Major Leveraging source
 - This must be planned at the procurement phase and built into the commercial contract
 - **Advantages**
 - Vendor is an expert- so should be less cost
 - Makes handover clear “only when it works”
 - Encourages “turnkey” thinking
 - **Some Pitfalls**
 - Bad Document Quality/ practices
 - Poor Change Control
 - Less control by Customer
 - Training opportunity lost
5. Change control strategy across the project lifecycle.
5. Change control strategy across the project lifecycle.

- Robust change control required at all stages of design and construction.
- Keep it Simple………..
 - Competent Peer Review
 - Regular Review thorough audits
 - Detailed analysis of the impact of changes

- Expectation should be that at handover from construction / Mechanical completion all drawings, dossiers and specifications are red lined and as-installed
- Leveraging often confuses start of QA change control agree the ground rules at project initiation
References and Acknowledgments

- ISPE Baseline guide 5
- Draft ISPE baseline guide 12 ‘Verification’
- GEP best practise Guide
- ICH Q9
- Lean C&Q Webinar ISPE Mar 2009